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The fundamental domain (for I'\(H U P}(Q)))




An explicit analytic fast inverse of the modular invariant

An explicit analytic inverse k of the modular invariant j was given
in [2] as a composition

k:= koo ky ok,
where
ll\/l(\/l—x2) N S
fo(x) = —— e hal) = G

k3(x) := VX2 — x3 — x,

and M(x) is the arithmetic-geometric mean of 1 and x.



Key properties of the inverse of the modular invariant

Strictly speaking, the function M is (doubly) infinitely-valued as its calculation
entails choosing one of two branches of the square root function at infinitely
many steps. Consequently, the function k is, as well, an infinitely-valued
function. However, its values, up to a sign, differ by the action of the modular
group PSL(2,Z). We mean that by flipping the sign, if necessary, we might
assume that the function k never assumes values in the lower half plane, and,
furthermore, its values might be brought via the action of the modular group
PSL(2,Z) to a single value in the (or any) fundamental domain. In other
words, while k is not strictly a left inverse of j, it is a right inverse, that is,

Vx €C, jok(x)=x,"

for the modular invariant j does not separate points, in its domain, as long as
they differ by the action of the modular group PSL(2,Z), and no troubles arise
in extending the latter equality to the whole Riemann sphere, including the
point at (complex) infinity.

1An analogy is afforded by a branch of the logarithmic function which is (regradless of the choice of
the branch) a right (but not left) inverse of the exponential function. While the values of the logarithm,
at a given point, constitute a discrete subset of a line, the values of the functions k and M do not. We
have already indicated that the function M is (doubly) infinitely-valued, suggesting that its values (at a
given point) constitute a discrete subset of C (not contained in any one-dimensinal subset over R), and
so is the function k.



Verifying the formula for the inverse k at 0 and 1: the

image (under j) of the “corners” of the fundamental domain

Before we move on to the modular equation, we must clarify the
calculation of the inverse function k for the two special values of
at the corners: j(¢) = 0 and j(i) = 1.2 So, we point out that the
(set) values of the composition, ki o ky at 0 and 1, coincide with
set values of the elliptic moduli 8 at 7 = ¢ and 7 = i, which,
respectively, are the four values 3 € {£i(, £i¢?} and the six values
B € {#i,+1/v/2,41/2}. Certainly, ko has a removable singularity
at zero and must be evaluated to —1 there, whereas kp(1) = 1/2.
Thus, ¢ € k(0) = ko o k1(—1), and i € k(1) = ko o k1 (1/2).3

2We denoted by ¢ a primitive cube root of unity, so ¢3 =1 # .
3Implying, unsurprisingly, that the values 0 and 1 are fixed by the (identity)
function j o k.
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The modular equation

Assume, unless indicated otherwise, that nis an odd prime. The
functional pair (j(7),j(n7)) is known to be algebraically dependent
(over Q), and is said to satisfy the modular polynomial of level n,
that is

®5(i(7), j(n7)) =0,

where the modular polynomial ®,, possesses integer (rational)
coefficients. Moreover, ®,, is symmetric in its two variables, that is
®,(x,z) = Pp(z,x). When 7 is fixed, and so is j(7), the
polynomial ®,(j(7), x) might be viewed as a polynomial in a single
variable x over the (base) field Q(j(7)),* and we shall call its roots,
the roots of the modular equation of level n.

*In fact, it might be viewed as a polynomial over the ring Z[j(7)].



The modular equation of level 3 and 5

®3(x,y) = 2176782336 x>y — 2811677184 (x3y? + y3x?) — 729 (x* + y*) + 779997924 (x3y + y3x) —
1886592284694 x2y2 — 15552000 (x> + y3) — 3754781568000 (x2y + y2x) — 110592000000 (x> + y2) +
188194816000000 x y — 262144000000000 (x + ).

3 (x,y) = x3y3 — 2232 3y + x2y3) — x* — y* + 1069956 (x3y + xy>) — 2587918086 x2y2 —
36864000 (x3 + y3) — 8900222976000 (x2y + y2x) — 452984832000000 (x2 + y2) +
770845966336000000 x y — 1855425871872000000000 (x + y). (Smith 1879)

®s5(x, y) = 8916100448256 x®y® — 10194382909440 (x®y* + y®x*) + 13589034024960 (x®y3 + y5x3) —
4974647446705766400 x*y* — 3505336473600 (x°y? + y®x2) — 186414787904261990400 (x*y3 +
y4x3) — x® — y® 4+ 246683410950 (x®y + y®x) — 383083609779811215375 (x*y? + y%x2) +
441206965512914835246100 x3y3 — 1136117760 (x° + y°) — 74387615108118528000 (x*y + y*x) —
15566255126377738181376000 (x3y2 + y3x2) — 430254526762844160 (x* + y*) +
64453772899964735127552000 (x3y + y>x) — 1711644060233550509015040000 x2y2 —
54313315434020926285414400 (x> + y3) — 7084552847250663218872320000 (x2y + y2x) —
750608416927050074633011200 (x? + y2) + 29617595563122405481849552896 x y —
3457795560648760910413824000 (x + y) — 5309626171273360722362368000.

5 (x,y) = x5y® — 3720 (x®y* + y*x®) + 4550940 (x®y> + y®x3) — 1665999364600 x*y* —
2028551200 (x®y2 + y®x2) — 107878928185336800(x*y> + y*x3) — x® — ® + 246683410950 (x®y + y®x) —
383083609779811215375 (x*y2 + y*x2) + 441206965512914835246100 x3y> — 1063211489280 (x> +
y®) — 128541798906828816384000 (x*y + y*x) — 26898488858380731577417728000 (x3y2 + y3x2) —
1284733132841424456253440 (x* + y*) + 102457934618928299655108231168000 (x3y + y3x) —
5110941777552418083110765199360000 x2y? — 280244777828439527804321565297868800 (x> + y3) —
36554736583949620295706472332656640000 (x2y + y2x) —
6692500042627997708487149415015068467200 (x> + y2) +
264073457076620596259715790247978782949376 x y —
53274330803424425450420160273356509151232000 (x + y) —
141350047154721358697753474691071362751004672000. (Berwick 1916)
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The Galois group of the modular equation

In his last letter [4], eloquently described by Hermann Weyl as “the
most substantial piece of writing in the whole literature of
mankind”, Evariste Galois indicated sufficient and necessary
condition for depressing the degree of the modular equation of
prime level. For this purpose he introduced the projective special
linear group over a prime field, which we denote by G,,®> and
observed that it was simple whenever the prime p strictly exceeded
the prime 3.

®The group G, might be viewed as the Galois group (in the common sense)
of its corresponding algebraic equations, as we shall further clarify. The standard
notation for G, is PSL(2,F,), where we assume the index p to denote a prime.



Back to solving the quintic, depression and Galois primes

Galois criterion for depressing the degree of the modular equation

A modular equation, of prime level n > 5, is depressible, from
degree n+ 1 to degree n (and no lower), iff (its group) PSL(2,Zy)
possesses a subgroup of index n iff n € {5,7,11}. Via explicitly
constructing a permutation representation for the three exceptional
groups, embedding them, respectively, in the three alternating
groups As, A7 and A;1,® Galois must, in particular, be solely
credited for solving the general quintic via exhibiting it as a
modular equation of level 5.

®For n=5,7,11, the subgroup of index n in PSL(2,Z,) turn out to be
isomorphic to As, Ss and As, respectively. These are precisely the symmetry
groups of the platonic solids. The tetrahedron, being self-dual, has As as its
symmetry group. Ss is the symmetry group for the hexahedron and the
octahedron, whereas As is the symmetry group for the dodecahedron and the
icosahedron.
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Galois constructions of subgroups of G, of index p

The group Gs acts (naturally) on the projective line PZs, which six
elements we shall, following Galois, label as 0,1,2,3,4 and co. Then
collecting them in a triple-pair {(0,00),(1,4),(2,3)}, the group Gs
is seen to generate four more triple-pairs {(1,0),(2,0),(3,4)},
{(2,00).(3,1).(4,0)}.{(3,0).(4,2).(0,1) }.{(4, 00).(0, 3).(1,2) }.
Together, the five triple-pairs constitute the five-element set upon
which Gy acts.

Galois wrote down only the first pair-set for each of the two
remaining cases, where p =7 and p = 11, respectively:
{(0,00),(1,3),(2,6),(4,5)}.{(0,0),(1,2),(3,6).(4,8),(5,10),(9,7)}.
Unlike the case p = 5, an alternative might be presented for the
case p = 7, which is {(0,00),(1,5),(2,3),(4,6)}, and for the case

p = 11, which is {(0,0),(1,6),(3,7), (4,2),(5,8),(9,10)}.



Elliptic polynomials as factors of the division polynomial

Denote by F := Q(5 + 1/3) the base field of the polynomial r,,
which roots are the first coordinates of the points (on Eg) of order
n. Call r, the division polynomial of level n. The field F[v,,],
obtained by adjoining a root ~,, of r, to the base field F, is the
splitting field for the elliptic polynomial of level n

(n—1)/2
rmn(Xx) := H (x=1-vm),

=1

where the dot is used to indicate the multiplication of the first
coordinate to yield the first coordinate of the /-multiple (on Eg).

The polynomial ry,, divides r,, and the first index (m) of ry,, might
be employed to designate n+ 1 pairwise coprime elliptic polynomial

factors of ry,:
n+1

ra(x) = H Fmn(X).
m=1
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Coelliptic polynomials

The group of automorphisms Aut(F[y,]/F) of each field extension
Flym]/F, 1 < m < n+1,is cyclic of order (n — 1)/2. One might,
in fact, establish the isomorphism

Aut (Flym] /F) = Zy [{+1},

where the group, on the right hand side of the isomorphism,
denoted by Z is the multiplicative subgroup of Z,: the (prime)
field of integers modulo n. Put g(x) := x>+ (8 +1/8)x + 1, and
to each elliptic polynomial rp,, associate a coelliptic polynomial

tm(X) = X rma(x)% = 24" (x) rl (X) Frn(X)+

+4.q(x) (1 n(X)* = 1 (%) rmn(x)) -
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Calculating the roots of the modular equation

Now, let (for a fixed 7 € D) the value of j(7) be given by

2 3
0 o= ey (-1,

then the roots of the modular equation, of level n, are

4 (d? + 1)3
*k c_ m 2 - 2( 22
( ) Jm = 27 drzn ’ dm ' d (ﬁm)7
52 - sm(—B) — sm(0)
" sm(=1/B) — sm(0)
where sp,(-) is the n-th degree fractional transformation given by
tm(x)
rmn(X)

1< m<n+1,

sm(x) == 5
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An action of S3

Evidently, each such root ji, is invariant as (32, is subjected to the
action of the triangle group Ss, which is generated by the two
inversions S and T given by

1
S:x——, T:x—1-—x.
X

This action on (32, corresponds to the action of S3 as the
permutation group of the three symbols {0, 3,1/}, appearing on
the right hand side of the defining expression for 2. One might
verify that, indeed, the value of one of the roots j,, coincides with
J(n7), while the rest n of the n+ 1 roots satisfy the relation
J(nk (jm)) = j(7). The elliptic curves Eg and Eg,, are said to be
related by cyclic isogeny of degree n.



Three suppressed and forgotten “snapshots” of history

In 1830, Galois competed with Abel and Jacobi for the grand prize of the
French Academy of Sciences. Abel (posthumously) and Jacobi were awarded
(jointly) the prize, whereas all references to Galois’ work (along with the work
itself!) have (mysteriously) disappeared. The very fact that Galois’ lost works
contained contributions to Abelian integrals is either unknown (to many) or
deemed (by some) no longer relevant to our contemporary knowledge.

Liouville acknowledged in September 1843 that he “recognized the entire
correctness of the method”, which was, subsequently (in 1846), published in
the Journal de Mathématiques Pures et Appliquées Xl, giving birth to Galois
theory. Liouville declared an intention to proceed with publishing the rest of
Galois' papers. Yet, most unfortunately, subsequent publication never ensued,
and neither Gauss nor Jacobi had ever fulfilled Galois modest request to merely
announce the significance (tacitly alleviating the burden of judging the
correctness) of his (not necessarily published) contributions. In 1847, Liouville
published (instead) his own paper “Legons sur les fonctions doublement
périodiques” .

In 1851, in a paper published in Annali di Tortolini, Betti futily asked Liouville
not to deprive the public any longer of Galois’ (unpublished) results. Then, in
1854, Betti showed that Galois' construction yields a solution to the quintic via
elliptic functions.
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Solving the quintic (1 out of 4)

The “absolute invariant” for the action of the subgroup I, of the
modular group I := PSL(2,Z), consisting of linear fractional
transformations congruent to the identity modulo 2, is the square
(of the elliptic modulus) 32. A fundamental domain >\ H, for the
action of ', (on the upper half-plane #), might be obtained by
subjecting a fundamental domain M\ (of ') to the action of the
quotient group /Ty =2 S3.7 In particular, 32 viewed as function on
H, is periodic, with period 2. Sohnke, in a remarkable work [6], had
determined the modular equations for 31/4, for all odd primes up
to, and including, the prime 19. That work, along with Betti's work
[3], inspired Hermite [5] to (successfully) relate a (general) quintic,
in Bring-Jerrard form, to a modular equation of level 5, yet he had
little choice but to admit the importance of a sole Galois idea (in
depressing the degree of the modular equation).

"The latter quotient group coincides with G which is isomorphic with Ss.
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Solving the quintic (2 out of 4)

The modular polynomial for 61/4, of level 5, is
d5(x,y) == x® = y® +5x%y% (x* — y?) + 4xy (1 — x*yh),

and the period of 51/# (as an analytically continued function) is 16.
Denoting the roots of ¢5(x, y = 3Y/4(7)), for a fixed 7 € H, by

, 0<m< 4

1
¥s = Y45 T), ym = —pY* <H56m)

one calculates the minimal polynomial for
x1 = (y5 — yo)(va — y1)(ys — 2) v

It turns out to be

x® —2000 52 (1 — B%)? x +1600v/5 32 (1 — 52)? (1 + B?).



Solving the quintic (3 out of 4)

Thereby, a root of the quintic

x> —x+c¢, ¢c:= 2(1 +57) = 20459 ¢
’ 55/4/B(1 — 32) 55/4y2\/1— y8

\@wq B (vs = y0)(ya — y1)(y3 — y2)
0 5fﬂ1—52 2y \/5VE(1 - y?)

and so is expressible via the coefficients A, and p,, of the elliptic
polynomials rms(x) = x2 — Amx + ftm, 0 < m < 5. In fact, the
polynomials rp,5 might be so ordered so that, for each m, the value
32, coincides with y8.

80ne must note that the constant coefficient c is invariant under the
inversions 3 — —1/8 and 8 — (1 — B)/(1 + B). Here, the composition of the
latter two inversions is another inversion. The corresponding four-point orbit in
a fundamental domain 2\ is generated via the mapping 7 — 2/(2 — 7).



Solving the quintic (4 out of 4)

The (general) expression for y& = 32 might be written as

y8 _ S()\m, Hm; 6)
T Bs(Am, pm, 1/8)

where

1+Ax o 222 2 2 3
s(A, p, x) = —— +x AN+ | — +4+5pu | x+X(—+3)x"+x7 |,
w w "

and the coefficients A\, = ym + (2 vm) and pm = Ym(2 - vm) satisfy

5 62 x10

H (X2*>\m)<+l—bm) :X12+

m=0

1
—21x® —60x° —25x* —10x2 + s

92 x2 x8 a3x®
+ ax3 <x8+4x6 —18x* — T —7) + o¢2x4 <? —3><2 —2) — = rg(x),

where o := 4(8 + 1/3). The roots vy, and 2 - vy, 0 < m < 5, of the division polynomial rs might be
highly efficiently calculated via the algorithm provided in [1]. Calculating a pair, say v9 and ~sg, suffices,
of course, for calculating all twelve roots via applying the addition formula along with the doubling
formula, as told in [2].



Two examples (1 out of 6)

2
Let, for example, 7 =2/, 8 = (\/E - 1) . The corresponding quintic is

s, 3vV2v2
5VV5

The corresponding division polynomial rg(x) factors over Q[\/g] into three quartic polynomial-factors:

i) = (*+4(3+V8)x*+6(5+2v5)x* —4(29+13V5 ) x+9+4V5)

<x‘+18;2+1—x+;> (X4+4(37\/§)X3+6(572\/§)x274(29713\/g)x+974\/g)4

Each (quartic) factor is an elliptic polynomial pair product. They are (with their argument omitted)

55150, rsars1 and rs3rsa, respectively. The (corresponding) modular polynomial

ors (x,y = ,31/4 =VV2 - 1) factors, over Q[y], into a quadratic and a quartic polynomial-factor:
95 (x,y) = (xz +y72) (X" +4y? (1 - Xz) x—2y*3% - ys) ,

and the six roots (of the modular polynomial) might be accordingly expressed and ordered:

oo 2 VE) Xy e (V2 (2 E) 0

x(1) x(=1) '
V2 (2-vE) — x(—i) — V2 (2++v5 ) - x(1)
y3 = %1 Ya =i \/§+1a Y5 = %a

where

X(e)::3+2ﬁe.



Two examples (2 out of 6)

Exploiting the identities
p=(vi-1)"=(vio-3) (V5 -2) (3v2+ V5 -2),

x(1) x(-1) = (\/572)2 = (3\/§+\/§+2) (3f—\/§—2).

x()x(=) = (VB+2)% = (3v2+ V5 - 2) (3v2 - VB +2),

along with the alternative expressions

Yo = — =0+ Dx() + V(i = 1)x(=1) Vs = Vi =1x() + /=0 + 1)x(=1)
2x(1) ' V2x(-1) ’
Vs = 2 x(=1) Vs = 2 x(7)
VEFIX® - VT = x(-1)’ V=X - VO + X1’
one finds out that
x1=—8vV58,
and, so, a root of our quintic is
-85 4 —2

2\/svEa(1—p2) VVIO



Two examples (3 out of 6)

Along the way, we might calculate the (five) discriminants
a(8%) = &*(8]) = & (83) = 32,

32 x(— ) 2x(i) 32 x(—1)
(15 (52) =5’ (53) G )5

observing that they are sixth powers of the respective values

32 x(1)
x(-1)%’

, d?(82) =

a*(83) =

55/6 VB —1 VB +1 V5 +1 V5 —1
T 21/6x(1)) 21/6x(—i) ] 21/6x(i)’ 21/6x(-1)’

and, so using equation (*), we might calculate five special values of the modular invariant:

() 5o a2 s (3

2

L /Bi—1 . 861\3

j( n >_12_ 572)2 (238\/5—60 \/§:+T>,
5/+1 861

j( n > =j3 572)2 (238f+60\/ 5+ >

jao) =js = (V5 +2f° x)® (238\/§+60\/7, 822)3 B

3
9These special values might be expressed as cubes if one notes that v/5 4 2 = (\/E + 1) /8




Two examples (4 out of 6)

We might now let 7 =/, 8 = V2, and observe that the modular polynomial
13 (x, y= ﬁ1/4 =\ Vv \/E) factors, over Q[y], into a quadratic and a quartic polynomial-factor:

o5 (x,y= ﬁ) = (X2 —y5X+y2) (X" —3y%3 —2y2x2+y7x—y4)’

before confirming that the roots of the latter quartic polynomial-factor

62\/§+1
y3(6\/ﬁ—1)’

e={1, —i, i, -1},

are, respectively, obtainable as fourth roots of the values

V2 (V5 +2)
x(—e€)

s

which, in turn, are (as they ought to be) the images of the four afore-calculated values B¢, 82, 83 and
Bs (where 8 was 3 — 21/2) if subjected to the (fourth order) linear fractional transformation

1+ Bm
1—Bm

, me {0, 23,5}

The four corresponding values of the discriminants are

72 2(2vs+2)” x(e)® :32( x(€) )‘*‘
)

x(—e T 2x(—c Vg



Two examples (5 out of 6)

Two more special values of the modular invariant are calculated by (reapplying) formula (*) to a
discriminant from, firstly, the complex-conjugate (¢ = £/ ) pair, and, secondly, the real-valued (¢ = £1)

pair:
_(5;+1) (292771323\@)3 51 <2927+1323\/§>3
- RTCY) I i il I

J 2 2 2

One might infer, from equation (**), that the modular polynomial, of level 2, ®3(x, z) vanishes at

!

— | ,1€{0,1,2},

s

where

1 d 1
(% ) =16(G5 —55. 574 ) d=a®)=5- .

For x € {jo, j2, j3, js } we have already calculated the (two) corresponding values zg. Concluding this
section, we calculate the corresponding values z; and z3, so put

VB +1

V9= o

(57272 — 340116 V2 + 4 (101 — 54636 \/E) 25 +

718(800+1115\/§+4(100+276\/§)62\/§)6ﬁ> =

(62\/§+ 1)37

239 (1190448438 — 858585699 51/2 + 540309076 €21/5 — 374537880 5 €21/10+

—e\/VE (693172512 — 595746414 51/2 4 407357424 €2V/5 — 240819696 & 52\/10) > =



Two examples (6 out of 6)

1
= s (129569705555681708+57945333889427292 VB—e \ VB (86648484409011792 + 38750380257176208 62\/§) +

—95V2 (10179957492752331 + 4552615392370507 €2v/5 — € \/ V5 (6807747878350206 + 3044517405934206 €2 /5 )) ) .

Now observe that

4 [28/34 2/3 3
z1(jm) = — (f””) - =7 o 5 | =v(-1,9%
27 B2, 24/3d(Bm)t/
alm = (32 e ¢t} —wie?
" me 24/3 80 d(Bm)2/3 T
where € € {1, —i, i, —1} correspond, respectively, to m € {0, 2, 3, 5} and verify that
,(5:’) o) ,(20i+5> @) ,(20:‘—5) (s}, §(200) = 220i)
)=z = 7)) =z — ) ==z i) =z
J 2 1Uo), J 17 1U2), J 17 1U3), J 1Us ),

j(5i+2> = z2(jo), J <M> =z2(j2), J (M) = 2(j3), J(M) = 22(js)-

4 13 13 2
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Four special values of the modular invariant

Suppose that j is (correctly) normalized with j(i) = 1, then

NZICTES VAN
! ( 13 ) -
<(1_\/g)37<
= ———"7 (1190448488 — 858585699 v/2 — 540309076 /5 + 374537880 v/10 +
3

+i\/V6 (693172512 — 595746414 /2 — 407357424 /5 + 240819696 \/10) >) ,

j (5(411'7:i:1)> _

37
1-+/5
= ((2;{) <1190448488 + 858585699 v/2 — 540309076 /5 — 374537880 /10 +

3

+i\/V56 (693172512 + 595746414 /2 — 407357424 /5 — 240819696 v/ 10) >) .



Two quotes from “Récoltes et Semailles” by Grothendieck

“Je suis persuadé d'ailleurs qu'un Galois serait allé bien plus loin
encore que je n'ai été. D'une part a cause de ses dons tout a fait
exceptionnels (que je n'ai pas regus en partage, quant a moi).”

“Mais au dela de ces différences accidentelles, je crois discerner a
cette “marginalité” une cause commune, que je sens essentielle.
Cette cause, je ne la vois pas dans des circonstances historiques, ni
dans des particularités de “tempérament” ou de “caractere”
(lesquels sont sans doute aussi différents de lui a moi qu'ils
peuvent |'étre d'une personne a une autre), et encore moins certes
au niveau des “dons” (visiblement prodigieux chez Galois, et
comparativement modestes chez moi). S'il y a bien une “parenté
essentielle”, je la vois a un niveau bien plus humble, bien plus
élémentaire.”
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