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The fundamental domain (for Γ\(H ∪ P1(Q)))



An explicit analytic fast inverse of the modular invariant

An explicit analytic inverse k of the modular invariant j was given
in [2] as a composition

k := k0 ◦ k1 ◦ k2,

where

k0(x) :=
i M
(√

1− x2
)

M(x)
, k1(x) :=

√
x + 4−

√
x

2
,

k2(x) :=
3

2

(
x

k3(x)
+ k3(x)

)
− 1,

k3(x) :=
3

√√
x2 − x3 − x ,

and M(x) is the arithmetic-geometric mean of 1 and x .



Key properties of the inverse of the modular invariant

Strictly speaking, the function M is (doubly) in�nitely-valued as its calculation
entails choosing one of two branches of the square root function at in�nitely
many steps. Consequently, the function k is, as well, an in�nitely-valued
function. However, its values, up to a sign, di�er by the action of the modular
group PSL(2,Z). We mean that by �ipping the sign, if necessary, we might
assume that the function k never assumes values in the lower half plane, and,
furthermore, its values might be brought via the action of the modular group
PSL(2,Z) to a single value in the (or any) fundamental domain. In other
words, while k is not strictly a left inverse of j , it is a right inverse, that is,

∀x ∈ C, j ◦ k (x) = x , 1

for the modular invariant j does not separate points, in its domain, as long as
they di�er by the action of the modular group PSL(2,Z), and no troubles arise
in extending the latter equality to the whole Riemann sphere, including the
point at (complex) in�nity.

1
An analogy is a�orded by a branch of the logarithmic function which is (regradless of the choice of

the branch) a right (but not left) inverse of the exponential function. While the values of the logarithm,
at a given point, constitute a discrete subset of a line, the values of the functions k and M do not. We
have already indicated that the function M is (doubly) in�nitely-valued, suggesting that its values (at a
given point) constitute a discrete subset of C (not contained in any one-dimensinal subset over R), and
so is the function k.



Verifying the formula for the inverse k at 0 and 1: the
image (under j) of the �corners� of the fundamental domain

Before we move on to the modular equation, we must clarify the
calculation of the inverse function k for the two special values of j
at the corners: j(ζ) = 0 and j(i) = 1.2 So, we point out that the
(set) values of the composition, k1 ◦ k2 at 0 and 1, coincide with
set values of the elliptic moduli β at τ = ζ and τ = i , which,
respectively, are the four values β ∈ {±i ζ, ±i ζ2} and the six values
β ∈ {±i ,±1/

√
2,±
√
2}. Certainly, k2 has a removable singularity

at zero and must be evaluated to −1 there, whereas k2(1) = 1/2.
Thus, ζ ∈ k(0) = k0 ◦ k1(−1), and i ∈ k(1) = k0 ◦ k1(1/2).3

2We denoted by ζ a primitive cube root of unity, so ζ3 = 1 6= ζ.
3Implying, unsurprisingly, that the values 0 and 1 are �xed by the (identity)

function j ◦ k.



Back to solving the quintic, depression and Galois primes

The modular equation

Assume, unless indicated otherwise, that n is an odd prime. The
functional pair (j(τ), j(nτ)) is known to be algebraically dependent
(over Q), and is said to satisfy the modular polynomial of level n,
that is

Φn(j(τ), j(nτ)) ≡ 0,

where the modular polynomial Φn possesses integer (rational)
coe�cients. Moreover, Φn is symmetric in its two variables, that is
Φn(x , z) = Φn(z , x). When τ is �xed, and so is j(τ), the
polynomial Φn(j(τ), x) might be viewed as a polynomial in a single
variable x over the (base) �eld Q(j(τ)),4 and we shall call its roots,
the roots of the modular equation of level n.

4In fact, it might be viewed as a polynomial over the ring Z[j(τ)].



The modular equation of level 3 and 5

Φ3(x, y) = 2176782336 x3y3 − 2811677184 (x3y2 + y3x2)− 729 (x4 + y4) + 779997924 (x3y + y3x)−
1886592284694 x2y2 − 15552000 (x3 + y3)− 3754781568000 (x2y + y2x)− 110592000000 (x2 + y2) +
188194816000000 x y − 262144000000000 (x + y).

Φ∗
3

(x, y) = x3y3 − 2232 (x3y2 + x2y3)− x4 − y4 + 1069956 (x3y + xy3)− 2587918086 x2y2 −
36864000 (x3 + y3)− 8900222976000 (x2y + y2x)− 452984832000000 (x2 + y2) +
770845966336000000 x y − 1855425871872000000000 (x + y). (Smith 1879)

Φ5(x, y) = 8916100448256 x5y5 − 19194382909440 (x5y4 + y5x4) + 13589034024960 (x5y3 + y5x3)−
4974647446705766400 x4y4 − 3505336473600 (x5y2 + y5x2)− 186414787904261990400 (x4y3 +

y4x3)− x6 − y6 + 246683410950 (x5y + y5x)− 383083609779811215375 (x4y2 + y4x2) +

441206965512914835246100 x3y3 − 1136117760 (x5 + y5)− 74387615108118528000 (x4y + y4x)−
15566255126377738181376000 (x3y2 + y3x2)− 430254526762844160 (x4 + y4) +

64453772899964735127552000 (x3y + y3x)− 1711644060233550509015040000 x2y2 −
54313315434020926285414400 (x3 + y3)− 7084552847250663218872320000 (x2y + y2x)−
750608416927050074633011200 (x2 + y2) + 29617595563122405481849552896 x y −
3457795560648760910413824000 (x + y)− 5309626171273360722362368000.

Φ∗
5

(x, y) = x5y5 − 3720 (x5y4 + y4x5) + 4550940 (x5y3 + y5x3)− 1665999364600 x4y4 −
2028551200 (x5y2 +y5x2)−107878928185336800(x4y3 +y4x3)−x6−y6 +246683410950 (x5y +y5x)−
383083609779811215375 (x4y2 + y4x2) + 441206965512914835246100 x3y3 − 1963211489280 (x5 +

y5)− 128541798906828816384000 (x4y + y4x)− 26898488858380731577417728000 (x3y2 + y3x2)−
1284733132841424456253440 (x4 + y4) + 192457934618928299655108231168000 (x3y + y3x)−
5110941777552418083110765199360000 x2y2 − 280244777828439527804321565297868800 (x3 + y3)−
36554736583949629295706472332656640000 (x2y + y2x)−
6692500042627997708487149415015068467200 (x2 + y2) +
264073457076620596259715790247978782949376 x y −
53274330803424425450420160273356509151232000 (x + y)−
141359947154721358697753474691071362751004672000. (Berwick 1916)



Back to solving the quintic, depression and Galois primes

The Galois group of the modular equation

In his last letter [4], eloquently described by Hermann Weyl as �the
most substantial piece of writing in the whole literature of
mankind�, �Evariste Galois indicated su�cient and necessary
condition for depressing the degree of the modular equation of
prime level. For this purpose he introduced the projective special
linear group over a prime �eld, which we denote by Gp,

5 and
observed that it was simple whenever the prime p strictly exceeded
the prime 3.

5The group Gp might be viewed as the Galois group (in the common sense)
of its corresponding algebraic equations, as we shall further clarify. The standard
notation for Gp is PSL(2,Fp), where we assume the index p to denote a prime.



Back to solving the quintic, depression and Galois primes

Galois criterion for depressing the degree of the modular equation

A modular equation, of prime level n ≥ 5, is depressible, from
degree n + 1 to degree n (and no lower), i� (its group) PSL(2,Zn)
possesses a subgroup of index n i� n ∈ {5, 7, 11}. Via explicitly
constructing a permutation representation for the three exceptional
groups, embedding them, respectively, in the three alternating
groups A5, A7 and A11,

6 Galois must, in particular, be solely
credited for solving the general quintic via exhibiting it as a
modular equation of level 5.

6For n = 5, 7, 11, the subgroup of index n in PSL(2,Zn) turn out to be
isomorphic to A4, S4 and A5, respectively. These are precisely the symmetry
groups of the platonic solids. The tetrahedron, being self-dual, has A4 as its
symmetry group. S4 is the symmetry group for the hexahedron and the
octahedron, whereas A5 is the symmetry group for the dodecahedron and the
icosahedron.



Back to solving the quintic, depression and Galois primes

Galois constructions of subgroups of Gp of index p

The group G5 acts (naturally) on the projective line PZ5, which six
elements we shall, following Galois, label as 0,1,2,3,4 and ∞. Then
collecting them in a triple-pair {(0,∞),(1, 4),(2, 3)}, the group G5

is seen to generate four more triple-pairs {(1,∞),(2, 0),(3, 4)},
{(2,∞),(3, 1),(4, 0)},{(3,∞),(4, 2),(0, 1)},{(4,∞),(0, 3),(1, 2)}.
Together, the �ve triple-pairs constitute the �ve-element set upon
which G5 acts.

Galois wrote down only the �rst pair-set for each of the two
remaining cases, where p = 7 and p = 11, respectively:
{(0,∞),(1, 3),(2, 6),(4, 5)},{(0,∞),(1, 2),(3, 6),(4, 8),(5, 10),(9, 7)}.

Unlike the case p = 5, an alternative might be presented for the
case p = 7, which is {(0,∞),(1, 5),(2, 3),(4, 6)}, and for the case
p = 11, which is {(0,∞),(1, 6),(3, 7), (4, 2),(5, 8),(9, 10)}.



Elliptic polynomials as factors of the division polynomial

Denote by F := Q(β + 1/β) the base �eld of the polynomial rn,
which roots are the �rst coordinates of the points (on Eβ) of order
n. Call rn the division polynomial of level n. The �eld F[γm],
obtained by adjoining a root γm of rn to the base �eld F, is the
splitting �eld for the elliptic polynomial of level n

rmn(x) :=

(n−1)/2∏
l=1

(x − l · γm) ,

where the dot is used to indicate the multiplication of the �rst
coordinate to yield the �rst coordinate of the l-multiple (on Eβ).

The polynomial rmn divides rn, and the �rst index (m) of rmn might
be employed to designate n + 1 pairwise coprime elliptic polynomial
factors of rn:

rn(x) =
n+1∏
m=1

rmn(x).



Back to solving the quintic, depression and Galois primes

Coelliptic polynomials

The group of automorphisms Aut(F[γm]/F) of each �eld extension
F[γm]/F, 1 ≤ m ≤ n + 1, is cyclic of order (n − 1)/2. One might,
in fact, establish the isomorphism

Aut (F[γm]/F) ∼= Z×n /{±1},

where the group, on the right hand side of the isomorphism,
denoted by Z×n is the multiplicative subgroup of Zn: the (prime)
�eld of integers modulo n. Put q(x) := x2 + (β + 1/β) x + 1, and
to each elliptic polynomial rmn associate a coelliptic polynomial

tm(x) := n x rmn(x)2 − 2q′(x) r ′mn(x) rmn(x)+

+4q(x)
(
r ′mn(x)2 − r ′′mn(x) rmn(x)

)
.



Back to solving the quintic, depression and Galois primes

Calculating the roots of the modular equation

Now, let (for a �xed τ ∈ D) the value of j(τ) be given by

j(τ) =
4
(
d2 + 1

)3
27 d2

, d2 = d2(β2) := (β − 1/β)2 ,(*)

then the roots of the modular equation, of level n, are

jm :=
4
(
d2m + 1

)3
27 d2m

, d2m := d2(β2m),(**)

β2m :=
sm(−β)− sm(0)

sm(−1/β)− sm(0)
, 1 ≤ m ≤ n + 1,

where sm(·) is the n-th degree fractional transformation given by

sm(x) :=
tm(x)

rmn(x)2
.



Back to solving the quintic, depression and Galois primes

An action of S3

Evidently, each such root jm is invariant as β2m is subjected to the
action of the triangle group S3, which is generated by the two
inversions S and T given by

S : x 7→ 1

x
, T : x 7→ 1− x .

This action on β2m corresponds to the action of S3 as the
permutation group of the three symbols {0, β, 1/β}, appearing on
the right hand side of the de�ning expression for β2m. One might
verify that, indeed, the value of one of the roots jm coincides with
j(nτ), while the rest n of the n + 1 roots satisfy the relation
j(n k (jm)) = j(τ). The elliptic curves Eβ and Eβm are said to be
related by cyclic isogeny of degree n.



Three suppressed and forgotten “snapshots” of history
In 1830, Galois competed with Abel and Jacobi for the grand prize of the
French Academy of Sciences. Abel (posthumously) and Jacobi were awarded
(jointly) the prize, whereas all references to Galois’ work (along with the work
itself!) have (mysteriously) disappeared. The very fact that Galois’ lost works
contained contributions to Abelian integrals is either unknown (to many) or
deemed (by some) no longer relevant to our contemporary knowledge.

Liouville acknowledged in September 1843 that he “recognized the entire
correctness of the method”, which was, subsequently (in 1846), published in
the Journal de Mathématiques Pures et Appliquées XI, giving birth to Galois
theory. Liouville declared an intention to proceed with publishing the rest of
Galois’ papers. Yet, most unfortunately, subsequent publication never ensued,
and neither Gauss nor Jacobi had ever fulfilled Galois modest request to merely
announce the significance (tacitly alleviating the burden of judging the
correctness) of his (not necessarily published) contributions. In 1847, Liouville
published (instead) his own paper “Leçons sur les fonctions doublement
périodiques”.

In 1851, in a paper published in Annali di Tortolini, Betti futily asked Liouville
not to deprive the public any longer of Galois’ (unpublished) results. Then, in
1854, Betti showed that Galois’ construction yields a solution to the quintic via
elliptic functions.



Back to solving the quintic, depression and Galois primes

Solving the quintic (1 out of 4)

The �absolute invariant� for the action of the subgroup Γ2, of the
modular group Γ := PSL(2,Z), consisting of linear fractional
transformations congruent to the identity modulo 2, is the square
(of the elliptic modulus) β2. A fundamental domain Γ2\H, for the
action of Γ2 (on the upper half-plane H), might be obtained by
subjecting a fundamental domain Γ\H (of Γ) to the action of the
quotient group Γ/Γ2 ∼= S3.

7 In particular, β2 viewed as function on
H, is periodic, with period 2. Sohnke, in a remarkable work [6], had
determined the modular equations for β1/4, for all odd primes up
to, and including, the prime 19. That work, along with Betti's work
[3], inspired Hermite [5] to (successfully) relate a (general) quintic,
in Bring-Jerrard form, to a modular equation of level 5, yet he had
little choice but to admit the importance of a sole Galois idea (in
depressing the degree of the modular equation).

7The latter quotient group coincides with G2 which is isomorphic with S3.



Back to solving the quintic, depression and Galois primes

Solving the quintic (2 out of 4)

The modular polynomial for β1/4, of level 5, is

φ5(x , y) := x6 − y6 + 5 x2y2 (x2 − y2) + 4 x y (1− x4y4),

and the period of β1/4 (as an analytically continued function) is 16.
Denoting the roots of φ5(x , y = β1/4(τ)), for a �xed τ ∈ H, by

y5 = β1/4(5 τ), ym = −β1/4
(
τ + 16m

5

)
, 0 ≤ m ≤ 4,

one calculates the minimal polynomial for
x1 := (y5 − y0)(y4 − y1)(y3 − y2) y .

It turns out to be

x5 − 2000β2 (1− β2)2 x + 1600
√
5β2 (1− β2)2 (1 + β2).



Solving the quintic (3 out of 4)

Thereby, a root of the quintic

x5 − x + c, c :=
2 (1 + β2)

55/4
√
β(1− β2)

=
2 (1 + y8)

55/4 y2
√
1− y8

, 8

is
√
5 c x1

4 (1 + β2)
=

x1

2
√
5
√
5β(1− β2)

=
(y5 − y0)(y4 − y1)(y3 − y2)

2 y
√
5
√
5 (1− y8)

,

and so is expressible via the coe�cients λm and µm of the elliptic
polynomials rm5(x) = x2 − λmx + µm, 0 ≤ m ≤ 5. In fact, the
polynomials rm5 might be so ordered so that, for each m, the value
β2m coincides with y8m.

8One must note that the constant coe�cient c is invariant under the
inversions β 7→ −1/β and β 7→ (1− β)/(1 + β). Here, the composition of the
latter two inversions is another inversion. The corresponding four-point orbit in
a fundamental domain Γ2\H is generated via the mapping τ 7→ 2/(2− τ).



Solving the quintic (4 out of 4)

The (general) expression for y8m = β2m might be written as

y8m =
s(λm, µm, β)

β4s(λm, µm, 1/β)
,

where

s(λ, µ, x) =

(
1 + λ x

µ
+ x2

)(
4λ +

(
2λ2

µ
+ 4 + 5µ

)
x + λ

(
2

µ
+ 3

)
x2 + x3

)
,

and the coe�cients λm = γm + (2 · γm) and µm = γm(2 · γm) satisfy

5∏
m=0

(
x2 − λm x + µm

)
= x12 +

62 x10

5
− 21 x8 − 60 x6 − 25 x4 − 10 x2 +

1

5
+

+ α x3
(
x8 + 4 x6 − 18 x4 −

92 x2

5
− 7

)
+ α

2x4
(

x6

5
− 3 x2 − 2

)
−
α3x5

5
= r5(x),

where α := 4(β + 1/β). The roots γm and 2 · γm, 0 ≤ m ≤ 5, of the division polynomial r5 might be
highly e�ciently calculated via the algorithm provided in [1]. Calculating a pair, say γ0 and γ5, su�ces,
of course, for calculating all twelve roots via applying the addition formula along with the doubling
formula, as told in [2].



Two examples (1 out of 6)

Let, for example, τ = 2 i , β =
(√

2− 1
)
2

. The corresponding quintic is

x5 − x +
3
√
2
√
2

5
√√

5
.

The corresponding division polynomial r5(x) factors over Q[
√
5] into three quartic polynomial-factors:

r5(x) =
(
x4 + 4

(
3 +
√
5
)
x3 + 6

(
5 + 2

√
5
)
x2 − 4

(
29 + 13

√
5
)
x + 9 + 4

√
5
)

(
x4 +

18 x2

5
+

8 x

5
+

1

5

)(
x4 + 4

(
3−
√
5
)
x3 + 6

(
5− 2

√
5
)
x2 − 4

(
29− 13

√
5
)
x + 9− 4

√
5
)
.

Each (quartic) factor is an elliptic polynomial pair product. They are (with their argument omitted)
r55r50, r54r51 and r53r52, respectively. The (corresponding) modular polynomial

φ5

(
x, y = β1/4 =

√√
2− 1

)
factors, over Q[y ], into a quadratic and a quartic polynomial-factor:

φ5 (x, y ) =
(
x2 + y−2

) (
x4 + 4 y3

(
1− y2 x2

)
x − 2 y4 x2 − y8

)
,

and the six roots (of the modular polynomial) might be accordingly expressed and ordered:

y0 = −

√√√√√2 (2 +
√
5
)
− χ(−1)

χ(1)
, y1 = −i

√√
2 + 1, y2 =

√√√√√2 (2−√5 )− χ(i)

χ(−i)
.

y3 =

√√√√√2 (2−√5 )− χ(−i)

χ(i)
, y4 = i

√√
2 + 1, y5 =

√√√√√2 (2 +
√
5
)
− χ(1)

χ(−1)
,

where

χ(ε) := 3 + 2

√√
5 ε.



Two examples (2 out of 6)

Exploiting the identities

β =
(√

2− 1
)
2

=
(√

10− 3
) (√

5− 2
) (

3
√
2 +
√
5− 2

)
,

χ(1)χ(−1) =
(√

5− 2
)
2

=
(
3
√
2 +
√
5 + 2

) (
3
√
2−
√
5− 2

)
.

χ(i)χ(−i) =
(√

5 + 2
)
2

=
(
3
√
2 +
√
5− 2

) (
3
√
2−
√
5 + 2

)
,

along with the alternative expressions

y0 = −
√
−(i + 1)χ(i) +

√
(i − 1)χ(−i)√

2χ(1)
, y5 =

√
(i − 1)χ(i) +

√
−(i + 1)χ(−i)√

2χ(−1)
,

y2 =

√
2χ(−i)√

(1 + i)χ(1)−
√

(1− i)χ(−1)
, y3 =

√
2χ(i)√

(1− i)χ(1)−
√

(1 + i)χ(−1)
,

one �nds out that
x1 = −8

√
5 β,

and, so, a root of our quintic is

−8
√
5 β

2

√
5
√
5 β(1− β2)

=
−2√√

10
.



Two examples (3 out of 6)

Along the way, we might calculate the (�ve) discriminants

d2(β2) = d2(β2
1

) = d2(β2
4

) = 32,

d2(β2
0

) =
32χ(−1)

χ(1)5
, d2(β2

2
) =

32χ(i)

χ(−i)5
, d2(β2

3
) =

32χ(−i)

χ(i)5
, d2(β2

5
) =

32χ(1)

χ(−1)5
,

observing that they are sixth powers of the respective values

2
5/6

,

√
5− 1

21/6χ(1)
,

√
5 + 1

21/6χ(−i)
,

√
5 + 1

21/6χ(i)
,

√
5− 1

21/6χ(−1)
,

and, so using equation (*), we might calculate �ve special values of the modular invariant:

j

(
5 i

2

)
= j0 =

(√
5 + 2

)
20

χ(−1)6
(
238
√
5− 60

√√
5−

861

2

)
3

, j(2 i) = j1 = j4 =

(
11

2

)
3

,

j

(
5 i − 1

4

)
= j2 = −

(√
5− 2

)
20

χ(i)6
(
238
√
5− 60

√√
5 i +

861

2

)
3

,

j

(
5 i + 1

4

)
= j3 = −

(√
5− 2

)
20

χ(−i)6
(
238
√
5 + 60

√√
5 i +

861

2

)
3

,

j (10 i) = j5 =
(√

5 + 2
)
20

χ(1)6
(
238
√
5 + 60

√√
5−

861

2

)
3

.9

9
These special values might be expressed as cubes if one notes that

√
5± 2 =

(√
5± 1

)
3

/ 8.



Two examples (4 out of 6)
We might now let τ = i , β =

√
2, and observe that the modular polynomial

φ5

(
x, y = β1/4 =

√√√
2

)
factors, over Q[y ], into a quadratic and a quartic polynomial-factor:

φ5

x, y =

√√√
2

 =
(
x2 − y5x + y2

) (
x4 − 3 y5x3 − 2 y2x2 + y7x − y4

)
,

before con�rming that the roots of the latter quartic polynomial-factor

ε2
√
5 + 1

y3
(
ε
√√

5− 1
) , ε = {1, −i, i, −1},

are, respectively, obtainable as fourth roots of the values

√
2
(
ε2
√
5 + 2

)
χ(−ε)

,

which, in turn, are (as they ought to be) the images of the four afore-calculated values β0, β2, β3 and

β5 (where β was 3− 2
√
2 ) if subjected to the (fourth order) linear fractional transformation

1 + βm

1− βm
, m ∈ {0, 2, 3, 5}.

The four corresponding values of the discriminants are

d2

 2
(
ε2
√
5 + 2

)
2

χ(−ε)2

 =
χ(ε)5

2χ(−ε)
= 32

(
χ(ε)
√
5− ε2

)6
.



Two examples (5 out of 6)
Two more special values of the modular invariant are calculated by (reapplying) formula (*) to a
discriminant from, �rstly, the complex-conjugate (ε = ±i ) pair, and, secondly, the real-valued (ε = ±1 )
pair:

j

(
5 i + 1

2

)
=

(
2927− 1323

√
5

2

)
3

, j (5 i) =

(
2927 + 1323

√
5

2

)
3

.

One might infer, from equation (**), that the modular polynomial, of level 2, Φ2(x, z) vanishes at

(x, zl ) =
4

27


(
d2 + 1

)
3

d2
,

(
d2l + 1

)
3

d2
l

 , l ∈ {0, 1, 2},
where (

d2
0
, d2

1
, d2

2

)
= 16

(
1

d2
, −

d

β3
, β

3 d

)
, d = d(β) = β −

1

β
.

For x ∈ {j0, j2, j3, j5} we have already calculated the (two) corresponding values z0. Concluding this
section, we calculate the corresponding values z1 and z2, so put

ψ(δ, ε) :=

√
5 + 1

8χ(ε)6

(
57272− 34011 δ

√
2 + 4

(
101− 5463 δ

√
2
)
ε
2
√
5 +

−18
(
800 + 111 δ

√
2 + 4

(
100 + 27 δ

√
2
)
ε
2
√
5
)
ε

√√
5

)
=

(
ε2
√
5 + 1

)
37

239

(
1190448488− 858585699 δ

√
2 + 540309076 ε

2
√
5− 374537880 δ ε

2
√
10+

−ε
√√

5
(
693172512− 595746414 δ

√
2 + 407357424 ε

2
√
5− 240819696 δ ε

2
√
10
))

=



Two examples (6 out of 6)

=
1

8

(
129569705555681708+57945333889427292 ε

2
√
5−ε

√√
5
(
86648484409011792 + 38750380257176208 ε

2
√
5
)

+

−9 δ
√
2

(
10179957492752331 + 4552615392370507 ε

2
√
5− ε

√√
5
(
6807747878350206 + 3044517405934206 ε

2
√
5
)))

.

Now observe that

z1(jm) =
4

27

(
28/3d(βm)2/3

β2m
−

βm

24/3d(βm)1/3

)3
= ψ(−1, ε)3,

z2(jm) =
4

27

(
2
8/3

β
2

m d(βm)2/3 +
1

24/3βm d(βm)1/3

)
3

= ψ(1, ε)3,

where ε ∈ {1, −i, i, −1} correspond, respectively, to m ∈ {0, 2, 3, 5} and verify that

j

(
5 i

4

)
= z1(j0), j

(
20 i + 5

17

)
= z1(j2), j

(
20 i − 5

17

)
= z1(j3), j (20 i) = z1(j5),

j

(
5 i + 2

4

)
= z2(j0), j

(
20 i + 4

13

)
= z2(j2), j

(
20 i − 4

13

)
= z2(j3), j

(
10 i + 1

2

)
= z2(j5).



Back to solving the quintic, depression and Galois primes

Four special values of the modular invariant

Suppose that j is (correctly) normalized with j(i) = 1, then

j

(
4 (5 i ± 1)

13

)
=

=

(1−√5 )37
239

(
1190448488− 858585699

√
2− 540309076

√
5 + 374537880

√
10+

± i

√√
5
(
693172512− 595746414

√
2− 407357424

√
5 + 240819696

√
10
))3

,

j

(
5 (4 i ± 1)

17

)
=

=

(1−√5 )37
239

(
1190448488 + 858585699

√
2− 540309076

√
5− 374537880

√
10+

± i

√√
5
(
693172512 + 595746414

√
2− 407357424

√
5− 240819696

√
10
))3

.



Two quotes from “Récoltes et Semailles” by Grothendieck

“Je suis persuadé d’ailleurs qu’un Galois serait allé bien plus loin
encore que je n’ai été. D’une part à cause de ses dons tout à fait
exceptionnels (que je n’ai pas reçus en partage, quant à moi).”

“Mais au delà de ces différences accidentelles, je crois discerner à
cette “marginalité” une cause commune, que je sens essentielle.
Cette cause, je ne la vois pas dans des circonstances historiques, ni
dans des particularités de “tempérament” ou de “caractère”
(lesquels sont sans doute aussi différents de lui à moi qu’ils
peuvent l’être d’une personne à une autre), et encore moins certes
au niveau des “dons” (visiblement prodigieux chez Galois, et
comparativement modestes chez moi). S’il y a bien une “parenté
essentielle”, je la vois à un niveau bien plus humble, bien plus
élémentaire.”
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